
FAST COGNITIVE AND TASK ORIENTED, ITERATIVE DATA
DISPLAY (FACTOID)

CHARLES STARK DRAPER LABORATORY

JUNE 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-140

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-140 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
PETER A. JEDRYSIK JULIE BRICHACEK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2012 – MAR 2017
4. TITLE AND SUBTITLE

FAST COGNITIVE AND TASK ORIENTED, ITERATIVE DATA
DISPLAY (FACTOID)

5a. CONTRACT NUMBER
FA8750-12-C-0293

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)

Joshua Poore

5d. PROJECT NUMBER
XDAT

5e. TASK NUMBER
A0

5f. WORK UNIT NUMBER
17

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Charles Stark Draper Laboratory
555 Technology Sq.
Cambridge, MA 02137

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB DARPA/I2O
525 Brooks Road 675 North Randolph St.
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-140
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
On the DARPA XDATA program, Draper developed new approaches to understanding the usability and adoptability of
data analytics applications. Draper developed the Software as a Sensor™ (SensSoft) capability, which turns analytics
software applications themselves into measurement mediums for usability and adoptability. These measurements were
used to develop and validate models of how users sequence and integrate features of software applications. Draper
integrated SensSoft logging into applications developed by 6 other XDATA performers and used the newly developed
metrics to provide comparative ranking and analysis to the XDATA program. To promote these advances in the broader
community, Draper transitioned this technology to the Apache Software Foundation, and has planned follow-on efforts
with DARPA, IARPA, and NGA efforts.

15. SUBJECT TERMS
Usability Testing; Software as a Sensor; Software evaluation; User modeling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

U

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
PETER A. JEDRYSIK

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

68

 i

TABLE OF CONTENTS
Section Page

LIST OF FIGURES ... iii

LIST OF TABLES .. v

1. SUMMARY .. 1

2. INTRODUCTIONS ... 2

2.1. Software Development.. 2

2.2. Evaluation and Human Subjects Research Activities .. 2

2.3. Publicity and Community Development .. 2

3. METHODS, ASSUMPTIONS, AND PROCEDURES ... 3

3.1. Software Development.. 3

3.1.2. Experimental Management. ... 3

3.1.3. Developer Tools. .. 4

3.2. Evaluation and Human Subjects Research Activities .. 4

3.2.1. Human Subjects Research Protocol. .. 4

3.2.2. Data Collection and Methods. ... 4

3.2.3. User Activity Logging Modeling and Metrics Validation. 9

3.2.4. XDATA Application Evaluation. .. 9

3.3. Publicity and Community Development .. 10

4. RESULTS AND DISCUSSION .. 10

4.1. Software Development.. 10

4.1.1. The Apache User Analytic Logging Engine (ALE) product. 12

4.1.2. The Apache Distill Product. ... 15

4.1.3. The Apache Test Application Portal (TAP). ... 17

4.1.4. The Apache Subject Tracking and Online User Testing (STOUT) product. ... 19

4.2. Evaluation and Human Subjects Research ... 26

4.2.1. Evaluation Events. ... 26

4.2.2. User Activity Logging Modeling and Metrics Validation. 26

4.2.3. XDATA Application Evaluation. .. 40

4.3. Publicity and Community Development .. 50

4.3.1. Inclusion into the Apache Software Foundation (ASF). 50

4.3.2. Exhibitions, Demonstrations and Public Outreach... 51

 ii

4.3.3. Transition Opportunities. ... 53

5. CONCLUSIONS ... 54

6. References ... 55

7. APPENDIX A – Publications and Presentations .. 57

8. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 58

 iii

LIST OF FIGURES

Figure Page

Figure 1. Sample Operational Task Component Question .. 6
Figure 2. Experimental Design for Human Subjects Data Collection. 7
Figure 3. XDATA MOT Infrastructure. ... 8
Figure 4. The Apache Software as a Sensor™ System. ... 11
Figure 5. UserALEv2 Logging Schema. .. 12
Figure 6. UserALEv3 Logging Schema as Depicted in JSON format. 13
Figure 7. Kibana Dashboard for Visualizing Application Use. 14
Figure 8. UserALE.js Demonstration and Log Structure.. 15
Figure 9. Early Distill Concept Interface (Year 3). ... 16
Figure 10. Apache TAP Dashboard for User Activity Analysis. 18
Figure 11. Apache TAP Dashboard for Visualizing User Workflows. 18
Figure 12. STOUT Participant Task Pathing Display, with Achievements. 20
Figure 13. STOUT Task Portal. ... 20
Figure 14. Draper's Evaluation Ecosystem.. 21
Figure 15. STOUT data models and their organization. .. 22
Figure 16. STOUT Participant Administration/Management Features........................... 23
Figure 17. STOUT’s D3 Visualization of Processed Data. .. 23
Figure 18. STOUT security vulnerabilities tested and addressed in year 3. 24
Figure 19. SCO+CH Aggregation Operations. .. 26
Figure 20. BP-HMM Approach to Modeling User Activity Logs. 28
Figure 21. BPHMM States Provide the Necessary Information for Deriving Integrated

Use Metrics. .. 29
Figure 22. Task Difficulty Question from Post-Task Questionnaire. 30
Figure 23. Cognitive Load Questions as Presented in Post-Task Questionnaires. 30
Figure 24. Scatterplots with Regression Lines Illustrating Association between Objective

Integration Metrics and Subjective Cognitive Load Metrics. 31
Figure 25. BP-HMM Integration Metric Effect Sizes in Predicting Cognitive Load,

Compared to Other Metrics. ... 32
Figure 26. BP-HMM Integration Metric Effect Sizes in Predicting Task Performance,

Compared to Other Metrics. ... 32
Figure 27. Relationship between BP-HMM Modeling Features and Eye-Tracking

Features. .. 33
Figure 28: Network representation of the sub-sequences extracted from all of the Neon

user sessions. ... 36
Figure 29. Task Performance Differences Between Applications 42
Figure 30. Task Performance Differences Between Sessions, by Application 42
Figure 31. Time-to-Complete Task Differences, by Application 43
Figure 32. Differences in Self-Reported Task Difficulty, by Application 44
Figure 33. Differences in Self-Reported Cognitive Load, by Application 45
Figure 34. Differences in Self-Reported Task Engagement, by Application 46

 iv

Figure 35. Differences in Self-Reported Task Enjoyment, by Application 47
Figure 36. Differences in Objective Integrated Use, by Application 48
Figure 37. Year 3 Application Rankings Against Key Usability Metrics 49
Figure 38. Year 4 Application Rankings Against Key Usability Metrics 49
Figure 39. Screenshot of the Apache SensSoft Webpage .. 51
Figure 40. Interactive Demos Hosted on the Apache SensSoft Webpage 52
Figure 41. Apache SensSoft Marketing Materials ... 52
Figure 42. SensSoft Exhibition Booth Display ... 53

 v

LIST OF TABLES

Table Page

Table 1. Sample sub-sequence pairs with corresponding Jaro distance values and
longest common sub-sequence .. 35

Table 2. Sub-sequence statistics for all applications. .. 37
Table 3. Description of metrics derived from sub-sequence statistics 38

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY

 At the start of the XDATA program, Dr. Chris White challenged Draper to
innovate a new capability and apparatus for understanding the usability and
adoptability of applications designed to support data analytics professionals.
While Draper previously demonstrated the utility of ingesting software activity
logs into pre-processing methods for psychophysiological research in user
engagement, Dr. White further challenged us to accomplish this task without the
use of traditional laboratory sensors. Essentially, Draper was challenged to
develop methods and apparatus that would turn analytics software applications
themselves into measurement mediums for usability and adoptability. After four
years of scientific research and software development, Draper has demonstrated
this very capability and has engineered an apparatus to provide this capability as
a service. We call this capability Software as a Sensor™ (SensSoft).
 As one of the world’s leaders and innovators in instrumentation, signal
processing, and both modeling and simulation, Draper takes very seriously the
vision of software that serves as a sensor for gathering data about user behavior,
modeling it to uncover both user-specific and canonical behavioral patterns that
indicate proficient end-use. Draper developed for the XDATA program:
• An Analytic Logging Engine to facilitate collection of this data from both

prototype and mature software environments
• Modeling approaches that capture how users sequence and integrate

features of software applications
• Validated metrics for quantifying how well users understand how to use

applications to perform real-world tasks
• A testing framework for performing usability evaluation at large scales.

 When Dr. Wade Shen assumed control of XDATA program, he challenged
Draper to reduce this technology to practice, and provide interfaces into modeling
techniques and metrics such that software developers could make use of them to
improve their applications. To meet this challenge Draper:
• Engineered its Analytic Logging Engine to require minimal effort for

deployment
• Developed software stack to support both analysis, for direct interface with

user activity logs, and visual analytics to extract insights that can be used to
iteratively improve applications

• Configured a constellation of components into an easy-to-deploy package

Apache Software as a Sensor™ (SensSoft) is now a viable product, available

to everyone through the Apache Software Foundation (ASF) that is undergoing
transition at the National Geospatial Intelligence Agency (NGA) through a
CRADA agreement, and is being used for other Science & Technology (S&T)
efforts at DARPA and IARPA.

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTIONS

 Draper’s efforts on the XDATA program fall into three main tasks: Software
Development; Publicity and Community Development; Evaluation and Human
Subject Research Activities. These are described in depth in the sections below.

2.1. Software Development

 Draper’s software development activities incorporate all work to develop a
user activity logging apparatus, and supporting elements: analytics stack;
application program interfaces (APIs); visualization and visual analytics;
experiment management services. This task also includes documentation and
software repository management. Consistent with our XDATA contractual
requirements, all software developed under contract is licensed for open-source
use. Draper has exceeded this requirement by transitioning all code developed
on the XDATA contract to the Apache Software Foundation (ASF), the world’s
premier open-source software foundation.

2.2. Evaluation and Human Subjects Research Activities

 Under direction of Dr. Chris White and Dr. Wade Shen, Draper’s role under
Technical Area 2 of XDATA was both to innovate new methods and apparatus
for understanding usability, as well as to use these new methods in service of
evaluating core XDATA program products developed by other performers. This
activity incorporates efforts to innovate new methods of evaluating tools and
performing evaluations, including: managing an extensible, multi-site human
subjects research protocol, approved by a human subject internal review board
(HSIRB); coordinating and executing data collection activities, both small and
massive; developing experimental artifacts, such as experimental tasks and
questionnaires; managing and integrating laboratory equipment; algorithm and
analytics development; hypothesis testing; producing evaluation reports.

2.3. Publicity and Community Development

 In the fourth year of the XDATA program, Draper worked to foster a
community of interest around our open-source software as a transition activity.
This activity incorporates efforts to increase the public awareness of Software as
a Sensor™, including: work to transition Software as a Sensor™ to other
agencies (e.g., NGA); work to transition SensSoft to the ASF; development of
both corporate and Apache marketing and documentation websites; generation
of marketing materials; social media campaigns; academic/industry conference
attendance, demonstrations; and public exhibitions.

Approved for Public Release; Distribution Unlimited.
3

3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1. Software Development

 In developing open-source software technology, Draper sought to design and
develop applications that are light-weight, easy to maintain, and developed from
other open-source components licensed under maximally permissible licenses,
so as to reduce conflicts with our own licensing strategy. Below we discuss the
classes of software developed, and class-specific assumptions. Descriptions and
delineation of features that comprise the specific software products (artifacts)
developed for XDATA can be found in Section 4.

3.1.1. User Activity Logging Apparatus. In order to develop an apparatus for

capturing user activities through software platforms, Draper understood the
following design assumptions:
• The apparatus would need to incorporate sufficient granularity in logs of

describing human use that would enable robust signal processing and
modeling.

• The apparatus would need to be compatible with a range of different software
applications.

• A single embodiment of the apparatus would likely only be able to serve
programs written in a specific language.

• The apparatus would need to connect with a database capable of indexing
single log messages and managing logs.

• The database serving the apparatus would need to have interface end-points
so that log data could be transmitted or utilized by other processes
(analytics).

• At least in prototype versions of the apparatus, adaptations to the source
code of applications would need be made.

3.1.2. Experimental Management. In order to effectively execute and manage both
small and large scale experiments, software would need to be designed to carry
out these functions. In developing this software we operated under the following
assumptions:
• The software would need to support registration features for participants to

enroll in research studies.
• Registration information (participant identifiers) would need be passed to

other data collection services (e.g., user activity logs, questionnaires, etc.).
• The software would need to support pathing options for routing participants

into different tasks.
• The software would need to “poll” other services, and provide merge

operations for various data sets.
• The software would need experimenter interfaces for both tracking, and

enrolling participants, as well as for performing analyses and basic pre-
processing.

Approved for Public Release; Distribution Unlimited.
4

3.1.3. Developer Tools. In year 2, Draper successfully demonstrated that with
sufficient granularity in user activity logs, models and metrics could not only
describe user behavior, but quantitatively describe both efficient and inefficient
user behavior. In year 3, we realized that while useful from an evaluation
perspective, the consumer of these models and metrics would largely be
program or project managers. Thus, at the end of our third year on the XDATA
program, we realized that to actually recommend changes that would improve
software usability new approaches to modeling and interfacing with user activity
logs would be needed to provide insights to developers, so that improvements
might be implemented. In the latter part of the third and the whole of the fourth
year of the XDATA program, Draper sought to define and implement software
applications and new modeling techniques that would support developers and
allow them to digest insights gleaned from user activity modeling. We operated
under the following assumptions:
• Developers would need to interact with both processed and raw data (user

activity logs), using software packages that were commonly used for analytics
and querying large databases (e.g., Python).

• Developers would need a way to visualize or produce visual analytics that
would help lead them to insights.

• New scalable modeling approaches would need be developed that would
better support visualization and visual analytics.

3.2. Evaluation and Human Subjects Research Activities

 Throughout the program, Draper was tasked to host, support and execute
evaluation activities to support the larger XDATA program. However, given that
Draper was a TA2 performer and challenged to develop and reduce to practice
novel methods and apparatus for performing such evaluations, the role of these
evaluations was two-fold: 1) to assess other performers’ work products on the
basis of usability, and 2) to provide useful data so that novel methods and
apparatus could be developed and validated.

3.2.1. Human Subjects Research Protocol. In order to make strong inferences about

the utility and performance of novel methods for assessing analytic software
usability, Draper would need to collect data from humans under a research
activity, necessitating human subjects research protections oversight and
approvals by both local and US Government (USG) HSIRB. This was also a
contractual requirement, stipulated by DARPA. All protocol documentation,
approvals, and continuing review documents were provided as deliverables.

3.2.2. Data Collection and Methods. In order to organize data collection and make

meaningful inferences about the differences between different XDATA
applications and the validity of novel models and metrics for usability, we devised
a scalable experimental design with both between- and within-subjects
conditions. This design allowed for compartmentalizing a few critical effects to
reduce confounds in findings. First, this design scales with the number of
applications (Factor 2), allowing us to test a wide range of XDATA applications,

Approved for Public Release; Distribution Unlimited.
5

and by incorporating a within-subjects condition (multiple exposures), this
provides use with sufficient experimental power to offset scale at the between-
subjects level. Second, the within-subjects conditions (Factor 1) allowed us to
understand whether specific tasks were more difficult than others, owing to the
nascent functionality of the applications. Finally, a counterbalancing factor
(Factor 3), allowed us to ensure that the order of tasks given to participants
systematically affected their performance in repeated exposures. This
experimental design was used to facilitate human subjects testing and data
collection throughout the program.

 The sequence of tasks distributed to research participants was also common
throughout data collection events:

1. Consent [5mins]: participants consent to participate or not.

2. Intake Questionnaire [30mins max]: composed of a number of surveys

soliciting Demographics, expertise, job/analyst experience, personality
(pertaining to problem solving and inference)[1-7] and problem solving
aptitude [8, 9].

3. Application Testing with Operational Task (1) [30mins max]: allowed research
participants to interact with the application, with accompanying data within the
context of operationally-relevant tasks paired with the data (and challenge
problems), not specific applications. Operational tasks were composed of a
sequence of 5 questions, requiring participants to utilize the application in
complex ways to ascertain the answer. Operational tasks were developed
largely without the applications under test, with support from other staff (e.g.,
Qntfy) to provide verifiable tasks that could be accomplished in “state-of-
practice” analysis tools (e.g., iPython Notebook). Answers to tasks were
known in advance and ground truth answers were verified by both Draper as
well as other XDATA personnel (e.g., support staff from Giant Oak and
Qntfy). Operational task questions were largely multiple choice response
formats (no fewer than 4 response choices). Where possible, we utilized free-
response formats, when free-response answers would be easy to parse and
easy to adjudicate with little risk of false negatives for correct answers (true
positive).

Approved for Public Release; Distribution Unlimited.
6

Figure 1. Sample Operational Task Component Question

4. Post-Task Questionnaire (1) [5-10mins]: completed by participants following
each Operational Task. Surveyed participants regarding how much
mental/cognitive load the tool introduced to the task, how difficult the task was
independent of the tool [10], how engaged they felt with the task [11], and
how much they enjoyed the task.

5. Application Testing with Operational Task (2) [30mins max]: a second
Operational Task and opportunity for participants to engage with the
application. This task is different, in terms of question content, however, is
designed to utilize the same data used for the first task.

6. Post-Task Questionnaire (2) [5-10mins]: a second post-task questionnaire,
identical to the first, soliciting responses related to the participants’ second
exposure to the application.

7. User Comments [5-10mins]: using Nielson’s revised design heuristics for
subjectively evaluating user-interfaces [12], we collected open-ended
responses for each of 10 Heuristics. This provided fast feedback and user
comments for immediate dissemination to XDATA Tool Developers.

8. Debriefing: an HSIRB-approved script detailing the study hypotheses,
purposes in greater depth for participants.

 All procedures could be completed within a 1.5-2 hour period of time,
including consent procedures. In addition to questionnaire data and free-
response data collected from participants, we collected user activity logs through
our UserALE service, while participants interacted with applications. In
experiments in years 2 and 3 of the XDATA program, Draper also used
physiological monitoring protocols as part of data collection, in service of activity
log metric development. The goal being to be able to give context to users

Approved for Public Release; Distribution Unlimited.
7

subjective reports tied directly to observable behavior during actual application
use.

Figure 2. Experimental Design for Human Subjects Data Collection.

 Data was collected from human research participants in three separate
testing events, during various points in the course of the XDATA program:
1. During the XDATA 2014 Summer Workshop, Draper completed 33 user

testing sessions from 33 unique users, with 8 XDATA prototype applications,
each using one or more unique datasets. Participants were furnished by
XDATA as part of program outreach and transition endeavors. Due to
application error, only 16-22 of participants were usable in analyses.
Physiological data was also collected from users in this event.

2. During the XDATA 2015 Summer Workshop, Draper completed 38 user
testing sessions from 36 unique users, with 6 different applications (Aperture,
FEAT, Minerva, Neon, Newman, Resonant). Participants were furnished by
XDATA as part of program outreach and transition endeavors. Due to server
crashes and participant non-compliance, task data for one or two tasks was
sometimes unusable. Draper collected 3 more User Testing sessions
following the Summer Workshop in order to fill these gaps so that there were
a roughly equal number of participants allocated to each application for
analysis. This resulted in a dataset with 33 fully complete cases (performance
data, subjective reports, and activity logs), and 36 cases with performance
data and activity logs. Comments, however, were not collected from the 3
additional volunteers; all 3 opted out of those measures. Physiological data
was also collected from users in this event.

Approved for Public Release; Distribution Unlimited.
8

3. At the end of XDATA year 3 (Q4 2015) and throughout XDATA year 4 (2016-

2017), Draper conducted a Massive Online Testing (MOT) event of XDATA
year 3 applications (Aperture, FEAT, Minerva, Neon, Newman, Resonant).
Testing was conducted using applications built by Draper to facilitate (see
Findings & Results) online human subjects research at scale. The virtual
assets for this data collection event were furnished by DARPA via
contractors—these assets include Amazon Web Services (AWS) resources,
such as virtual machines, load-balancers, and a web site designed to
generate interest in XDATA (participants were routed through this site) (see
Figure 3).

Figure 3. XDATA MOT Infrastructure.

Data was collected through Amazon’s Mechanical Turk (MTURK) panel
service. Roughly 1,180 MTURK users participated in the XDATA MOT. Of
these participants, roughly 800 were suitable for analysis due to non-
completion of measures, drop-out or other reasons.

Approved for Public Release; Distribution Unlimited.
9

3.2.3. User Activity Logging Modeling and Metrics Validation. In selecting and

developing modeling approaches to understand human use of analytic software
applications, Draper reviewed the extant research literature (and existing
commercial offerings), identifying key gaps in the insights gathered from similar
approaches. As a result, the following assumptions guided our efforts in
developing modeling and descriptive metrics for evaluation purposes:
• Models for human usage would need to incorporate both how users allocate

effort across the features of applications (e.g., application space), and the
temporal patterns with which users work with applications (e.g., application
time). Only by combining elements of “space” and “time”, would we be able to
sufficiently model workflow in a disaggregated way.

• Models for human usage would need to incorporate methods that allowed us
to model canonical tool use, not just single use sessions, or particular users.

• Models would need to produce output that would be easy to incorporate into
visual analytics or visualizations.

• Metrics would need to describe model characteristics that are intrinsic
features of all models of different applications, so as to make one model
comparable to others across the same metrics, with a similar interpretation.

• Metrics would need to be intuitive in their meaning, such that they directly
indicate some key pattern of life or some strategy of use. Thus, validation of
such metrics would provide tests of key behavioral patterns rather than a
strict “data mining” activity for numbers that correlate with validation criterion.

• Metrics would need to be validated against traditional or “state-of-practice”
measures, so as to not only verify that they contain the same (or more)
information as traditional metrics, but also validate their utility and sensitivity
against “’state-of-practice” measures as benchmarks.

3.2.4. XDATA Application Evaluation. Part of Draper’s role on XDATA was to use

both “state-of-practice” methods and novel methods and apparatus developed in
course of the XDATA program to evaluate other performers’ products. In serving
in an evaluation role, we made the following assumptions:
• Comparisons between applications would utilize metrics and methods

designed to ensure that applications were compared at a level of abstraction
such that meaningful differences between applications could be ascertained;
applications would be compared against metrics that are equally informative
for all applications (e.g., “apples-to-apples”, not “apples-to-oranges”
comparisons.

• Evaluation activities would coincide with metric validation activities for novel
models and metrics, so as to provide meaningful, scientifically rigorous
context to performers and programs personnel so that novel metrics are
interpretable in relation to “state-of-practice” methods and metrics.

• Steps would be taken to invite fair comparisons of applications wherever
rankings were produced. This includes normalization or weighting techniques
to ensure that quantitative differences reflecting the sensitivity of measures is
taken into account prior to making judgements about the ranks of
applications.

Approved for Public Release; Distribution Unlimited.
10

3.3. Publicity and Community Development

 In the fourth year of the XDATA program, Draper worked to foster a
community of interest around our open-source software as a transition activity.
This community was to include both end-users of the technology, as well as
prospective contributors—people that would want to help grow our technology. In
order to accomplish this, Draper engaged in a number of outreach, marketing
and community activities, operating under the following assumptions:
• Draper’s Software as a Sensor™ open-source offerings would be more

successful as community tools if they were included within a larger
interconnected community that had an existing brand and public following
(e.g., Apache Software Foundation).

• Draper would need to engage the public directly in marketing Software as a
Sensor™ open-source offerings through public showings, exhibitions, and
lectures. These activities would need to broadly canvas prospective users,
including commercial, government and academic, and would need to coincide
with industry meetings, conferences, tradeshows, etc.

• The funding provided for “productizing” Draper’s Software as a Sensor™
open-source offerings in the fourth year would likely be sufficient to produce
“minimally viable products”; for widespread adoption, enterprise level maturity
would be necessary in order to accelerate and maintain a community of
interest. As such working with US government end-users in “transition”
activities would provide a means to identify and develop road-maps for gaps
in Software as a Sensor™ open-source that would need to be addressed to
make them viable to large enterprises.

4. RESULTS AND DISCUSSION

4.1. Software Development

 Across 4 years as a performer on the XDATA program, Draper has imagined,
innovated and engineered a viable open-source system for collecting user
activity data, analyzing it for insights related to how usable and adoptable
productivity (and/or analytic) software is. In year 4, Draper completed
developments of an integrated Software as a Sensor™ system (Figure 4), and
transitioned the open-source project to the ASF and DoD transition partners at
NGA. Developments on the components of the system are described in
subsequent sections, the system itself is deployable as an integrated whole
through a pre-configured Docker container. Additional information about the
project as well as all deployment and build documentation can be found at
http://SensSoft.incubator.apache.org

http://senssoft.incubator.apache.org/

Approved for Public Release; Distribution Unlimited.
11

 Figure 4. The Apache Software as a Sensor™ System.

Approved for Public Release; Distribution Unlimited.
12

4.1.1. The Apache User Analytic Logging Engine (ALE) product. In May 2015, we

deployed UserALE v3 and began assisting developer in implementing it for User
Testing and Online Testing. When users interact with specific elements (e.g.,
button, map, table) of an application, UserALE code injected into the source code
related to those elements package and send a light-weight Java Script Object
Notation (JSON) message detailing which class of event (e.g., Click, Hover, etc.)
activated the User Interface (UI) element. UserALEv3 was a dramatic
improvement over UserALEv2, and UserALE, which were simple prototypes
(Year 1 and 2 outputs). Much of these improvements were related to making it
easier for developers to apply labels to the API. Rather than mapping UI
elements to specific kinds of analytic workflow components (e.g., Explore Data,
Create View, etc.). These workflow components were derived from year 1
qualitative studies with analysts. However, in implementation developers had
difficulty fitting these labels in mutually exclusive ways to their UI components
(see Figure 5).

Figure 5. UserALEv2 Logging Schema.

 UserALEv3, in contrast, adopted a ground-up model, letting developers label
the elements and element groups of their application as they felt most
appropriate. UserALEv3 information was very close in kind to Google Analytics,
Adobe Ominture, Piwick and similar (Figure 6).

Approved for Public Release; Distribution Unlimited.
13

Figure 6. UserALEv3 Logging Schema as Depicted in JSON format.

 Another major upgrade was the integration of ELK Stack (ElasticSearch,
LogStash, Kibana), which improves our capabilities for rapidly collecting,
archiving and accessing activity log data. Integration with Kibana provides an
agile, configurable set of dashboards that developers (and programmatic
personnel) may configure however they like to examine net usage of applications
as well as what features of the applications they are using most. Kibana is also
immensely useful for assessing how effectively UserALE was implemented, both
evaluation and developer roles (Figure 7).

Approved for Public Release; Distribution Unlimited.
14

Figure 7. Kibana Dashboard for Visualizing Application Use.

 In May 2016, Draper released UserALE.js, culminating in a viable productized
version of our logging apparatus. UserALE.js has a number of improvements
upon UserALEv3, including a dramatic reduction in level of effort (LOE) for
deploying UserALE.js. UserALEv3 required developers to manually apply “hooks”
for the UserALE service API throughout their source code. UserALE.js removed
this dependency, reducing instrumentation to the application of a single line of
code, injected into the top of the source code. This code is a “script tag”, which
calls UserALE.js that exist outside the application. When called, UserALE.js
initiates messaging services, recording the event received by event handler, the
target element that received the event, the nesting of that target element within
the applications’ Document Object Model (DOM) branching structure, cursor
screen coordinates (x,y), and other configurable parameters (see Figure 8). In
this way, UserALE.js is directly competitive with modern commercial services in
terms of implementation, and is superior with respect the granularity of data
contained in each log. This provides sufficient granularity for signal processing in
a way that is reduced-to-practice and enables detailed workflow modeling as
described in later sections. A persistent, live demonstration of UserALE.js is
available at http://senssoft.incubator.apache.org. Not only does UserALE.js
dramatically reduce the LOE for deployment, but enhances the richness in the
data that the UserALE service provides for user activity gathering in web
applications.

http://senssoft.incubator.apache.org/

Approved for Public Release; Distribution Unlimited.
15

Figure 8. UserALE.js Demonstration and Log Structure.

4.1.2. The Apache Distill Product. In year 3, Draper realized that one of the most

important user sets of usability findings are software developers themselves.
Draper therefore began developing concepts and software for developers to
interface directly with UserALE data, analyze it themselves and visualize it in
distinct ways suited for developers. Our concept for Distill changed dramatically
from year 3 and year 4, but the underlying theme behind Distill is to provide a
direct interface between developers and UserALE data.
 In year 3, we envisioned Distill as a simple web application to clearly and
concisely deliver usage analytics. It visualized results such as sub-sequence
metrics and demographic data in a way that enables developers to explore and
understand how people are using their applications. This would allow developers
to build a better understanding of their users, identify actionable insights, and
ultimately iterate and improve their applications. In year 3, we thought to provide
developers direct access to their users’ sequential behavior, visualized as
clusters of sequential behavior, with weights applied to how frequently users
were observed within those workflows. These insights were observable through a

Approved for Public Release; Distribution Unlimited.
16

“sunburst” plot. This version of Distill thus attempted to provide developers a
clear way to understand how their users integrated features in time (sequentially)
to perform tasks. Developers could then subset user sets to explore how different
classes of users made use of the application, for added insight (Figure 9).

Figure 9. Early Distill Concept Interface (Year 3).

 In year 4 of the XDATA program, we completely re-engineered Distill in the
service of productization. Rather than a user interface, we re-imagined Distill as a
data interface and analytics stack, or framework. As the analytic framework of the
Software as a Sensor™ Project, it provides segmentation, statistical packages
and graph analysis for describing users’ interactions with the application to
adopters. Distill is written in Python and utilizes packages like Continuum
Analytics’ sci.py and num.py packages for statistical processing, and open-
source packages like NetworkX for producing graph models. Distill is engineered
so that certain aspects of processing can be off-loaded outside of Distill’s own
Python environment, so that developers and data scientists can work with their
data using their own analytics environment (e.g., Anaconda), but retain the ability
to connect to UserALE data and Distill’s segmentation functions. Distill provides
an interface directly into UserALE log databases, providing representational state
transfer (REST) interfaces and structured query services for calling data, and
applying a variety of models to that data. The segmentation feature allows
developers or data scientists to focus their analyses of user activity data based

Approved for Public Release; Distribution Unlimited.
17

on desired data attributes (e.g., certain interactions, elements, etc.), as well as
attributes describing the software tool users, if that data was also collected.
Distill’s usage and usability metrics are derived from a representation of users’
sequential interactions with the application as a directed graph. This provides an
extensible framework for providing insight as to how users integrate the
functional components of the application to accomplish tasks. Figure 4 provides a
schematic for how Distill connects and serves other Software as a Sensor™
services.

4.1.3. The Apache Test Application Portal (TAP). After the reimagining of Distill in
Year 4, Draper developed a service for visualizing data processed through Distill,
and a user interface (UI) for making queries against Distill for data and post-
processing of that data for visualization. TAP was developed to fulfill this need,
with additional features to provide a variety of functional front-end capabilities to
developer end-users.
 TAP is designed to be a scalable visualization platform to support the open-
source Apache SensSoft project community. In this respect, adopters of TAP will
be able to configure how various filter settings connect with their unique data
structure, and add visualization assets for viewing their data as they see fit. In
this way, development efforts emphasized integration of TAP with the rest of the
Apache SensSoft project components via RESTful interfaces (see Figure 4). In
order to serve visualization and integration needs, we developed TAP using
Python and Django. This provides some useful features for user management, as
well as a customizable environment that developers can use to embed
visualization assets from open-sources like Data Driven Documents (D3) and
REACT.
 Draper focused its development efforts for TAP visualizations on unique
features that were not otherwise included in other packages. For example, for
users that are simply interested in seeing count or frequentist data on how many
UI elements were interacted with or number of users, they may simply benefit
from using Elastic’s Kibana dashboard. Moreover, features like these are simple
to “drag and drop” and configure in TAP using open-source assets like D3 (e.g.,
histograms). As such, Draper developed an interface that highlight the
discriminating capabilities of Apache SensSoft, including graph analytics (via
NetworkX libraries) for workflow models and version-to-version testing, i.e., A/B
testing comparisons of activities from one version of an application and another
(Figure 10) (via Continuum statistics packages like SciPy, and NumPy). Among
our key innovations in visualizations is a customized chord chart with integrated,
interactive visualizations for graph metrics (the “Bowie” plot) (Figure 11).

Approved for Public Release; Distribution Unlimited.
18

Figure 10. Apache TAP Dashboard for User Activity Analysis.

Figure 11. Apache TAP Dashboard for Visualizing User Workflows.

Approved for Public Release; Distribution Unlimited.
19

 TAP’s features for supporting the procedural aspects of user management
are built on top of Django. Django is a Python development framework that
makes it easier for others to make and add functional modifications. One of the
key features leveraged for TAP, in this respect, is Django’s ability to negotiate
individual user permissions (e.g., registration, access controls, and persona
management). This allows each adopter of TAP to register their own account
within an instance of TAP, customize their views and utilities, independent of how
other adopters might use it (e.g., persona management). However, TAP supports
an information model that allows user to register as children of a parent
organization, providing a means for sharing access to data stored in Elastic
databases at an institutional level, and modifying these views at the individual
user level.

4.1.4. The Apache Subject Tracking and Online User Testing (STOUT) product.

The Subject Tracking for Online User Testing (STOUT) application was a
prototype in year 2 and was developed into a functional suite of software in year
3 to assist with various human subjects data collection activities. STOUT’s base
functionality enables managing user pathing through experimental tasks (Figure
12), and providing an instrumented interface for users to start and move through
tasks presented through web forms (e.g., SurveyMonkey) in a way that is non-
invasive with respect to access to a test application and the performance of that
application (Figure 13). Notable improvements include an improved user
authentication system, the addition of experiment and achievements models to
improve user tracking and engagement, a simplified process for registering new
tools, and a UI refresh. In addition to design and implementation improvements
on the STOUT system, we developed a larger ecosystem for integrating
analytics.

The evaluation ecosystem can be seen in Figure 14 below and shows how
STOUT integrates with the analytical tools SurveyMongo, Scale Computation
and Codebook Handling (SCO+CH), and Distill. STOUT sits in the center and
functionally coordinates the entire data collection and analysis pipeline through a
RESTful API. STOUT, SurveyMongo, SCO+CH (see Figure 14), and Distill are
all products developed during year 3.

STOUT collects, organizes and stores metadata about participants along with
task assignments and progress metrics. It is a content management system for
formal human performance experimentation. STOUT presents tools and
operational tasks to each participant. It tracks progress on an intake
questionnaire to assess the user’s background and experience as an analyst,
and operational task performance. The STOUT system provides human-subjects
testing experiment administrators with a flexible tool for managing and tracking
user progress through a series of online tasks. The STOUT system was
designed to help collect information about the utility of online applications.

Approved for Public Release; Distribution Unlimited.
20

Figure 12. STOUT Participant Task Pathing Display, with Achievements.

Figure 13. STOUT Task Portal.

Approved for Public Release; Distribution Unlimited.
21

Figure 14. Draper's Evaluation Ecosystem.

 STOUT is a web based database application built using the Django
framework. The data models can be seen in Figure 15. STOUT assigns
registered users a user profile that is associated with their account and used to
track their progress through the experiment. For year 3, the user authentication
system was upgraded to include Django’s built-in authentication authorization
system which provides individual and group access controls to restrict navigation.
New administrative features for managing content were implemented to provide
additional enforcement of authorization protocols.
 The remaining STOUT data models in Figure 15 provide content tracking and
management throughout the experiment. A registered user is assigned an
Experiment object that dictates the number of tasks to be completed, the time
allowed for each task, whether or not these tasks should be done sequentially or
not, and if the particular experiment requires an intake and post task
questionnaire. Individual tasks are managed with the Task List Item object that
provides an association between a User, a Task and a Product (tool). Tasks and

Approved for Public Release; Distribution Unlimited.
22

Products are associated with one another through a common Dataset (challenge
problem). A final data model was added for Achievements to further incentivize
participation by rewarding top performers or active participation. Achievements
can be earned for accuracy, completion time, and peer referrals.

Figure 15. STOUT data models and their organization.

 A group of administrative controls were added to STOUT for year 3. These
controls simplify the addition and management of all the data models within
STOUT. Now, any user with the proper administrative authorization can add or
manage products (tools) and their associated tasks. New users can be registered
by administrators prior to their participation to facilitate the experimental process.
Task and product (tool) assignment can also be managed directly from the
experiment administrator portal (Figure 16). Additional features for the
experiment administrator through the new portal include viewing results
generated from apps connected on the analysis pipeline (see Figure 17).

Approved for Public Release; Distribution Unlimited.
23

Figure 16. STOUT Participant Administration/Management Features.

Figure 17. STOUT’s D3 Visualization of Processed Data.

 In preparation for the massive online experiment hosted at the end of year 3
and during year 4, a number of security features were added to STOUT, and a

Approved for Public Release; Distribution Unlimited.
24

number of vulnerabilities were tested. Figure 18 summarizes a comprehensive
list of these security tests performed to maintain data and application security
during online testing.

Figure 18. STOUT security vulnerabilities tested and addressed in year 3.

 SurveyMongo is a small scale application deployed with STOUT and enables
STOUT to poll multiple data sources (e.g., questionnaire data, user registration
data, etc.) (Figure 14). It is a web based database application designed to
automate and index task response data from participants and prepare it for
analysis. The tasks that are presented through STOUT are created with surveys
built at SurveyMonkey.com. These surveys are then presented to the user
through an interface in STOUT. Every response that the user submits is
appended with a unique hash created from the user’s username to ensure
anonymity but preserve traceability between users during analysis.
SurveyMonkey.com provides an API to access responses and that API was used
to build SurveyMongo.

Topic Vulnerability / Risk Complete Dependency
Limit admins More accounts for potential unauthorized access Yes Internal
Limit real-time updates Chance of inadvertently taking out existing functionality Yes Internal
Use current versions Prevent usage of modules with known security risks. Yes Internal
Secure code storage Unintended visibility or execution of Python code Yes Internal
NGINX configuration Set up general security settings on NGINX installation Yes Internal

Topic Vulnerability / Risk

Secure user input Prevent SQL injection attacks Yes Internal

Backup database Loss of data if corrupted or accidentally deleted. Yes Internal/L-3
Secure Postgres Unauthorized users gaining access to DB contents. Yes Internal
Encrypt database Unauthorized users gaining access to DB contents, even if encrypted. No Internal
Password complexity Prevent easy password cracking Yes Internal
Data exfiltration prevention Data leaving database unnoticed No Internal
Protect PII Loss of privacy for user group Yes Internal
Secure user credentials Loss of privacy of user credentials Yes Internal
Separation of resources Accessing DB through web app Yes Internal

Topic Vulnerability / Risk
Web Application Firewall (WAF) SQL injection, XSS, CSRF, etc. Yes Internal
HTTPS only Passing unencrypted data such as logon credentials; MITM attacks Yes Internal/External
Secure session ID XSS by guessing session IDs Yes Internal
Session Security XSS by reusing session IDs Yes Internal

Limit User Sessions

Denial of Service attack through opening excessive sessions (Other DDoS risks,
but this is a nice idea for preventing increased system load and one avenue to a
problem.) Yes Internal

Auto-escape with templates XSS in Django 1.7 Yes Internal
CSRF protection Prevent usage of one user's credentials by another user Yes Internal
Clickjacking prevention Prevent malicious rerouting of users via content in hidden frames. Yes Internal

Older browser security
Browsers older than IE8, Firefox 3.6.9, Opera 10.5, Safari 4, and Chrome 4.1 won't
prevent clickjacking with the above settings. No Internal

Authentication throttling Avoid brute force attacks Yes Internal

Lock root account Rogue user gets access to root account and has privileges to access entire server. Yes Internal

Prevent hanging sessions
User leaves browser open and unauthorized user uses account before the
session expires. Yes Internal

XDATA Security Topics
General Security

Database

Web Application

Approved for Public Release; Distribution Unlimited.
25

 The main requirement that drove the design and implementation of
SurveyMongo was the need to organize data by participant. SurveyMonkey.com
organizes response data by survey, but our analysis pipeline requires that data
be organized by participant. SurveyMongo downloads response data for all tasks
from SurveyMonkey.com and then re-indexes it by participant, combines it with
logistical data from STOUT, and organizes it into a tabular format where each
row is a unique user and the columns are all the features of interest. As seen in
Figure 14 above, this table then used by SCO+CH to perform additional scale
computations and append metrics to this table that can be used in analyses and
viewable through STOUT.
 SCO+CH is an R language script concept for automating form data
(questionnaires, surveys, etc.) post-processing and managing codebooks for
large research datasets. Particularly for datasets that need be shared across
sites and those that might contribute to legacy datasets, it is imperative to
carefully manage how raw data is combined or aggregated into composite
variables that may then be used in statistical analyses and hypothesis testing.
This is critical to ensuring that empirical findings can be reproduced and
expanded upon and requires tracking how raw data is weighted, normalized, etc.,
before aggregation into composite variables. In reality, many researchers
calculate and name composite variables for use in research using private
schemes and code bases, in a variety of statistical (SAS, SPSS) and engineering
tools (MatLab, Python). These formats and methods are not often
interchangeable or interoperable, making standardization of methods and sharing
research data difficult.
 In preparation for the Massive Online Experiment, we began developing an R
code base with functions designed to read and manage codebooks containing
metadata about how raw data is aggregated into composites, scales, etc.
SCO+CH ingests both raw data and a codebook, applying item reversals,
weighting schemes, etc. SCO+CH capitalizes on a standardized variable naming
convention to parse variable names of raw data variables and composites to be
computed. Based on the structure of these variable names, SCO+CH will
compute these composites using the correct raw data variables (Figure 19).
SCO+CH keeps master data tables organized for shared use, and allows for
scalable data collection efforts by preventing the need for “hard-coding”
aggregation commands when new data is added to the raw dataset. So long as
the raw data variable naming convention conforms to a certain scheme, new
logic for computing new composites can be input using the variable of the
desired composite.
 SCO+CH is currently integrated into the Evaluation Ecosystem (Figure 14)
and computes metrics from questionnaire data and activity log metrics. While
currently a series of scripts integrated into an application with a simple wrapper,
we intend on developing it further and releasing it as an open source R library
that anyone can benefit from. SCO+CH is integrated into the Online Testing
Infrastructure as a script wrapped to function as a web app. In this way, other
applications (e.g., STOUT) can initiate SCO+CH scripts, which then produces
metrics and composite variables automatically (see Figure 19).

Approved for Public Release; Distribution Unlimited.
26

Figure 19. SCO+CH Aggregation Operations.

4.2. Evaluation and Human Subjects Research

 An important aspect of Draper’s role on the XDATA program was evaluation
and human subjects research. These two activities worked hand in hand, as the
challenge issued to Draper by DARPA was to innovate in methods for evaluating
software. As such, as we collected data for evaluations, we used that data for
developing new modeling approaches for user activity logs and validating
quantitative metrics for use in evaluation.

4.2.1. Evaluation Events. Throughout the course of the XDATA program, Draper
worked with DARPA to plan and oversaw 3 data collection events (years 2, 3, 4).
Given the maturity of applications in year 2, rather than an evaluation, year 2
served as a means to demonstrate and validate initial capabilities in user activity
logging and analyses of prototype applications. Evaluations were performed in
both year 3 and 4, however, as DARPA issued guidance to performers to
enhance prototype applications and productize them for public and USG
consumption.

4.2.2. User Activity Logging Modeling and Metrics Validation. As part of our role on
the XDATA program, we were challenged to create new, objective metrics
regarding analytic application usability. In order to accomplish this we adapted
modeling techniques developed on internal research and development (IR&D)
funding, as well as innovated new approaches. These modeling techniques are
designed to exploit the information contained in user activity logs (collected
through UserALE products). Metrics that describe the properties of models
developed were identified and then validated against current state of the art
methods for ascertaining usability. Overall, validation research conducted in year
2 of XDATA, as well as research that coincided with application evaluations in

Approved for Public Release; Distribution Unlimited.
27

year 3 and 4 provides confidence that data we collected from applications (via
UserALE products) contain objective usability information. This research also
provides confidence that the modeling approaches we applied to that data also
yield information related to usability. At each year we were able to replicate these
findings, demonstrating a capability for providing objective, minimally invasive
software usability analysis. Additionally, in each year, as we assessed more
mature applications tied to more complex, real-world analytic concepts of
operation (CONOPS), we showed generalizability evidence that our technology
and modeling approaches are capable of adding value both in and outside of the
laboratory—replication and generalization are the benchmarks of successful
science and technology.
 In 2013, Draper adapted Beta Process-Hidden Markov Modeling (BP-HMM)
for use in modeling sequential behavior data from software activity logs [13]. A
Hidden Markov Model (HMM) is a type of Markov model that represents the
dynamics of a stochastic system as a set of states and state transition
probabilities, where the states themselves are not observable. A data
(observation) sequence is generated by an HMM according to the set of
observation probability distributions associated with the hidden states, and the
state transition probabilities of the model, both of which are learned from the data
[14]. Hidden Markov models have been applied in many cases to understand
sequential human behavior and workflows, such as how body movements are
coordinated (from motion capture), goal-related behavior in robotics research,
and even behavioral (gestural) software inputs [15-18].
 A key shortcoming of traditional Hidden Markov models is that they can only
represent the dynamics of a single underlying Markov process, and comparing
between two different models is like comparing apples to oranges. If we were
only interested in examining how one user performed tasks with a given software
application, and the unique behaviors of that user, the standard HMM formulation
would be sufficient. However, the goal of this analysis is to understand canonical
behavior patterns in an entire ensemble of logs. To accomplish this, we
implemented a version of the HMM designed for multi-sequence processing, the
beta-process HMM (BP-HMM). The BP-HMM is a non-parametric, Bayesian
implementation of Hidden-Markov Models (HMM) that has only recently been
introduced as a means for understanding sequential human behavior (typically
motion capture) [19]. We have expounded on the original BP-HMM formulation
by improving aspects of its implementation, including development of an
automated parameter selection process and heuristics for model selection that
reduce subjectivity [13]. The result is a global library of software usage states—
different ways that users combine software functionality to accomplish tasks—
that represents all the behavior of all users observed with an application. Once
generated, this global library of states provides a way to describe each user’s
session as a sequences of states and state transition probabilities, enabling
identification of canonical software usage patterns for each software application.
 Each state that emerges from activity logs through our BP-HMM
implementation represents how different software activities were integrated in
frequency and time in a way that is substantively different from other ways of
integrating these activities (Figure 20). BP-HMM is highly germane to the study of
software usability, how users learn to use software, and whether software makes

Approved for Public Release; Distribution Unlimited.
28

it difficult for users to coordinate their efforts on tasks, beyond the difficulty of the
tasks themselves (e.g., cognitive load). This is very appealing from a software
evaluation perspective. However, while BP-HMM allows for generalized models
across users of the same software, those models do not generalize across
different software applications. In order to make comparisons of usability across
different applications we developed metrics in 2014 for describing gross
properties of these models to enable these comparisons.

Figure 20. BP-HMM Approach to Modeling User Activity Logs.

 Though BP-HMM states are different from one another, both within and
across different software applications, they represent the same information—the
likelihood with which software activities are observed together in time. Thus,
while qualitatively different, the distributions of these probabilities can be similarly
described quantitatively, agnostic to the meaning of those activities. For example,
if users understand an application, we would expect them to understand how to
use different UI elements and functions together, in an integrative way. In a BP-
HMM model, this would be expressed in probabilistic distributions of activity that
were more uniform or flat—diffused activity across the software’s functionality.
Alternatively, reliance on just a few functions might indicate a limited
understanding of the software and would be expressed in more peaked
distributions. These distributional shapes can be easily described with simple
central tendency statistics (maximums, averages) and kurtosis (sample excess
kurtosis) statistics.
 Central tendency statistics (maximum averages of activity frequencies) can
help classify different states as being uniform or peaked, given the unique state
space of each application. Kurtosis or other measures of central mass in
distributions allow for classifications based on objective comparisons against
excess values with more rigid definitions. Metrics can then be calculated by
establishing the proportion of time with the application that users spend in

Approved for Public Release; Distribution Unlimited.
29

uniform or peaked states [13]. These metrics, which describe integrated or dis-
integrated use of applications, can be used to compare different software
applications; our published work illustrates that the amount of time users spent in
non-integrative states (e.g., “peaked states”) is positively correlated with
measures of cognitive load [13].

Figure 21. BPHMM States Provide the Necessary Information for Deriving
Integrated Use Metrics.

 Across year 2, 3, and 4 of the XDATA program we have been able to
replicate findings between our BP-HMM integration metric and subjective reports
of cognitive load, task difficulty, and performance. The amount of time users
spent in non-integrative states (e.g., “peaked states”) is positively correlated with
reports of cognitive load and task difficulty, and inversely correlated with task
performance. We also find (across the three studies) that metrics extracted from
the BP-HMM approach outperform any that are calculated from raw software
activity logs, such as activity rate/min, and are competitive with eye-tracking
metrics.
 Cognitive load and task difficulty were key metrics against which to validate
BP-HMM metrics for integrated (or dis-integrated) use. Where task difficulty is the
degree to which the task is intrinsically difficult, independent of the application (or
tool) used to perform the task (Figure 22), cognitive load is the degree to which
the application impedes task performance, independent of how intrinsically
difficult the task is (Figure 23).

Approved for Public Release; Distribution Unlimited.
30

Figure 22. Task Difficulty Question from Post-Task Questionnaire.

Figure 23. Cognitive Load Questions as Presented in Post-Task
Questionnaires.

 Across year 2, 3 and 4 of the XDATA program we were able to confirm that
integrative use metrics owing to the BP-HMM modeling approach are correlated
in meaningful ways with cognitive load and task difficulty metrics. In years 2 and
3, we were able to replicate findings from a pilot study completed under
laboratory conditions using a simple, game-like interface (Figure 24). In this
study, we were able to show that the time users spend in “peaked”, dis-integrated
usage states is positively associated with reports of task difficulty (r = .62, p <
.05; R2 = .38). In year 2 of the XDATA program, we replicated this finding (r = .58,
p < .05; R2 = .34) using prototype applications developed by XDATA performers.
In year 3, we not only replicated this finding, but generalized findings it to more
mature, advanced analytic applications using large-scale datasets and
operationally relevant tasks crafted in collaboration with former analysts (r = .45,
p < .01; R2 = .21). In year 4, we validated these effects at scale in a massive
online testing events with MTURK users (r = .42, p < .000; R2 = .18) (Figure 25).
Across each of these years, we also found that these metrics were associated

Approved for Public Release; Distribution Unlimited.
31

with task performance (Figure 26). Additonally, in each year we found that BP-
HMM metrics outperformed simple activity rate metrics that have become the
industry standard for how to use user activity logs in workload analysis [20].

Figure 24. Scatterplots with Regression Lines Illustrating Association
between Objective Integration Metrics and Subjective Cognitive Load Metrics.

Approved for Public Release; Distribution Unlimited.
32

Figure 25. BP-HMM Integration Metric Effect Sizes in Predicting Cognitive
Load, Compared to Other Metrics.

Figure 26. BP-HMM Integration Metric Effect Sizes in Predicting Task
Performance, Compared to Other Metrics.

 In year 2, we also assessed whether the BP-HMM modeling approach was
sensitive to the same information as eye-tracking data, which is frequently used
to ascertain application usability. In this analysis, we modeled a time-series of
pupil dilation data around BP-HMM specific and non-specific features. We found
that BP-HMM features (state-transitions) embedded in the pupil dilation time
series accounted for more variation in pupil-dilation data than either non-specific
features (activities) or “dead-space” (null-events) (Figure 27). This suggests that
BP-HMM metrics capture the same or similar information that is obtainable with
state-of-the-art laboratory measures, at a fraction of the cost and with measures
that are feasible in uncontrolled operational environments.

Approved for Public Release; Distribution Unlimited.
33

Figure 27. Relationship between BP-HMM Modeling Features and Eye-
Tracking Features.

 Our findings also suggest that it may matter less that applications have
peaked usage states, or how many they have, but rather how much time users
spend in them. Each application may have a strong random intercept with
respect to the percentage of time that users spend in activities. This suggests
that while each application may have different canonical usage patterns (more or
less integrative or “kurtotic”), applications can be ranked based on how each
application forces them into states that illustrate less integration across software
functionality. We are currently examining these random effects with massive
online testing data given the substantial statistical power we were able to accrue
through sampling. Overall, our BP-HMM metrics have direct traceability to
software functions that can be fixed, and our data is sampled from end-use; the
metrics described above do not depend on any particular task structure, only that
users have their own tasks. This is a major advancement in the fields of human
computer interfacing and affective computing.
 In years 2 and 3, we also experimented using sub-sequence modeling as a
complimentary approach to BP-HMM to add granularity to our analyses. Sub-
sequences are atomic-level workflows describing the patterns of activities that
users integrate when performing tasks. We applied this approach to year 2 data
and found that users who generated longer, repeated sub-sequences, performed
better on tasks. We also realized that from a developer perspective, this highly
granular perspective into usage is likely more useful than BP-HMM models for
informing application improvement efforts. In year 3 we developed new methods

Approved for Public Release; Distribution Unlimited.
34

for extracting sub-sequences that are more germane to visualization and
exploration. We also identified new quantitative ways of describing user’s sub-
sequences that while somewhat useful for evaluation, will prove to be more
useful for future workflow modeling and visualization. Below we summarize our
exploration of subsequences in Year 3 of the XDATA program.
 For each application, the complete set of unique activity logs that could be
generated through interaction with the interface was identified and used to create
a master log code dictionary. Each log was assigned a numerical value, and the
raw activity sequences from each session were re-coded accordingly.
 To better understand the relationship between actual sequential interactions
with the applications and outcome measures, we partitioned each dataset into
overlapping sub-sequences, creating a library of short activity kernels. We
hypothesized that canonical patterns of user interactions could be extracted from
this library and used to provide feedback to developers about specific usage
patterns of their applications, and for identification of meta-workflows that might
be predictive of outcome measures derived from the summer camp experiment
(e.g. scores from OT questions, pre- and post-task survey responses) and/or
demographic data about the participants (e.g. background, work experience). In
the following, we describe the process by which the sub-sequences were
extracted, clustering of sub-sequences to identify canonical behavior patterns,
and metrics derived from raw and meta-sequences.
 We partitioned each dataset into overlapping sub-sequences (SSs) of lengths
3-6 and identified the set of all the unique SSs observed across all users, as well
as the number of times each unique sequence occurred. We chose this range of
lengths through experimentation with the data. The resulting number of sub-
sequences varied widely across tools, as they are a function of the total number
of unique activities available to the user.
 The set of SSs derived from each session contains a lot of redundancy.
Additionally, there are many instances of singleton SSs, i.e. unique SSs that
occurred only once across all user sessions. To extract meaningful meta-sub-
sequences from this collection, we implemented a novel fuzzy clustering
approach that combines methods from natural language processing with
community detection in network models [21].
 The fuzzy clustering approach we implemented does not technically
constitute a ‘fuzzy’ method in the strictest sense of the word often used in the
machine learning literature. It’s used to emphasize the fact that one of the goals
of the clustering algorithm was to identify a set of representative SSs, as
opposed to selection of a set of SSs from the collection as the representation of
each cluster. We chose to represent the collection of SSs for each application as
a network, where each node is one of the unique SSs extracted from all user
sessions, and the edges between nodes represent the similarity between the two
SSs.
 We experimented with several similarity metrics often used for approximate
string matching [22] and selected two metrics for use in the clustering process:
The length of the longest common sub-sequence (LCS) shared by two SSs.
The Jaro distance 𝑑𝑑𝑗𝑗 between the two SSs.

Given two strings, 𝑠𝑠1 and 𝑠𝑠2:

Approved for Public Release; Distribution Unlimited.
35

𝑑𝑑𝑗𝑗 = �
0, 𝑖𝑖𝑖𝑖 𝑚𝑚 = 0

1
3
� 𝑚𝑚

|𝑠𝑠1| + 𝑚𝑚|𝑠𝑠2| + 𝑚𝑚−𝑡𝑡
𝑚𝑚
� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1)

 where 𝑚𝑚 = the number of matching characters, 𝑡𝑡 = the number of
transpositions, and |𝑠𝑠1| and |𝑠𝑠2| are the lengths of strings 𝑠𝑠1 and 𝑠𝑠2. Two
characters are considered matching if they are identical and the distance
between them is ≤ �max (|𝑠𝑠1|,|𝑠𝑠2|)

2
� − 1. The number of transpositions is the number

of matching characters, in different sequence order, divided by 2 [23]. The scale
of the Jaro distance metric is between 0 and 1, with 0 being a complete
mismatch between sequences, and 1 indicating that the sequences are identical.
 Both metrics allow for some degree of mismatch between the two sequences,
by design. Since the SSs represent actual sequences of user interactions with an
application, slight variations in the sequences (e.g. transpositions, character
misalignment) shouldn’t preclude them from being placed into the same
category. Some sample sequence pairs and their corresponding LCS and Jaro
distance values are provided in Table 1 to show how similarity between SSs
translates to a numerical value.

Table 1. Sample sub-sequence pairs with corresponding Jaro distance

values and longest common sub-sequence.

Sample sub-sequence
pairs

Jaro
Distance

Longest Common Sub-sequence

[9, 44, 2, 44, 1]
[44, 9, 49] 0.52 1

[40, 44, 21, 21, 21]
[44, 40, 32] 0.52 1

[20, 21, 48]
[26, 48, 21, 9, 45] 0.52 1

[21, 9, 49, 48]
[45, 9, 49, 48, 9] 0.78 3

[11, 8, 40, 32, 9]
[11, 9, 40, 32] 0.78 3

[8, 44, 40, 32, 44]
[44, 9, 40, 44] 0.78 3

[2, 3, 5, 53, 1]
[3, 5, 53, 1] 0.93 4

[8, 21, 20, 49]
[8, 21, 21, 20, 49] 0.93 4

[2, 3, 2, 44]
[5, 2, 3, 2, 44] 0.93 4

 Running the community detection clustering algorithm on the network model
derived from the full set of unique nodes using either distance metric was
relatively unsuccessful. The network was not inherently modular due to large

Approved for Public Release; Distribution Unlimited.
36

average closeness between nodes of the network structure, even when strict
minimum similarity metric thresholds were used to reduce the number of edges
between nodes.
 Our solution to this problem was to reduce the number of SSs used to
construct the network model, prior to running the community detection algorithm.
These ‘seed’ nodes were selected from the set of length-3 sequences with
frequency of occurrence greater than a minimum threshold (chosen to be 4). A
small network was constructed from these sequences using LCS length as the
distance metric between nodes, and a minimum LCS length = 2 for an edge to be
placed between two nodes. The community detection algorithm resulted in a
partition that was used as the seed for determining the community membership
of the remaining SSs in the collection. Longer sequences (lengths 4-6) that were
direct descendants of the length-3 seeds (i.e. have one of the seeds as their first
3 values) with frequencies of occurrence greater than 4 were directly connected
to the seed nodes, creating a hierarchical skeleton structure for each community,
against which all other SSs were compared.
 The remaining unique sequences, the vast majority of which were singletons,
were compared to the nodes in the skeleton of each community, using the Jaro
distance as the measure of similarity. If the Jaro distance was ≥ 0.8 for a single
community, this SS was considered an associate of the community. Figure 28
depicts the network representation of the unique sequences collected from the
Neon sessions. Nodes and edges are colored by community membership, and
there were 9 total communities identified from this set of sub-sequences.
Skeleton nodes and edges are shown in white. The number of SSs assigned to
each community varies considerably.

Figure 28: Network representation of the sub-sequences extracted from all
of the Neon user sessions.

Approved for Public Release; Distribution Unlimited.
37

 By constructing the network in this way, we were able to connect the vast
majority of the remaining unique sequences with a single community. i.e., there
were very few instances of SSs being equally similar to a member of the skeleton
of more than one community. The number of communities identified for each
application, as well as the proportion of all the unique sequences associated with
one of the communities is shown in Table 2.

Table 2. Sub-sequence statistics for all applications.

Application Number of
activity
codes

Total number of
unique sub-
sequences
collected from all
users/sessions of
all lengths (3-6)

Number of
communities
(clusters)

% of sub-
sequences
accounted for
by the
clusters

Neon 60 6558 9 86.1%
Newman 28 3419 6 79.2%
Minerva 127 10840 11 70.8%
Resonant 25 3036 6 82.9%
Aperture Tiles 114 7530 8 86.2%
FEAT 34 5347 7 96.0%

We generated several metrics from the unique set of SSs collected for each tool
for each user’s session. A description of each of the metrics is provided in Table
3 below. Overall, the metrics are designed to assess the diversity of behavior
patterns exhibited by each user during their sessions.

Approved for Public Release; Distribution Unlimited.
38

Table 3. Description of metrics derived from sub-sequence statistics.

Unique sub-sequences and
singletons

The total number of unique SSs observed
during a user’s session was determined, as
well as the number of times each SS
occurred. Singleton activities occurred only
once during the session.

prop_unique_L(3, 4, 5, 6, all_L)
number of unique SSs in a session / total
number of SSs in the session, and the lengths
of those SSs (“L”)

prop_singletons_L(3, 4, 5, 6,
all_L)

number of SSs occurring 1 time in a session /
total number of SSs in the session, and the
lengths of those SSs (“L”)

Uniqueness of the sub-
sequences

Each sub-sequence represents a series of
user interactions with the application. A
unique-activity (UA) SS is one where there
are no repeated activities in the SS, e.g. [1, 5,
11, 2] Similarly, a unique-elementGroup
(UEG) SS is one where each activity in the
sequence corresponds to an interaction with a
different elementGroup, as defined by USER-
ALE logging scheme.

prop_num_all_unique_codes_L(
3, 4, 5, 6, all_L)

number of all UA SSs / total number of unique
SSs in the session, and the lengths of those
SSs (“L”)

prop_counts_all_unique_codes_
L(3, 4, 5, 6, all_L)

total number of observed instances of the UA
SSs / total number of SSs in the session, and
the lengths of those SSs (“L”)

prop_num_all_unique_eg_L(3,
4, 5, 6, all_L)

number of all unique UEG SSs / total number
of unique SSs in the session, and the lengths
of those SSs (“L”)

props_counts_all_unique_eg_L(
3, 4, 5, 6, all_L)

total number of observed instances of the
UEG SSs / total number of SSs in the
session, and the lengths of those SSs (“L”)

Bouncing sub-sequences

A sub-sequence is classified as ‘bouncing’ if
the activities in the sequence bounce back
and forth between two different activities, e.g.
[1, 2, 1, 2]

Approved for Public Release; Distribution Unlimited.
39

prop_bounces_L(3, 4, 5, 6,
all_L)

total number of observed instances of
bouncing SSs / total number of SSs in
session, and the lengths of those SSs (“L”)

prop_unique_bounces_L(3, 4, 5,
6, all_L)

number of SSs defined as bouncing / total
number of unique SSs in the session, and the
lengths of those SSs (“L”)

 Part of the exercise of validating new metrics is examining what information
those metrics contain. Another part is in understanding whether information
between metrics is redundant. In evaluating the first question for sub-sequence
metrics, we find that the length of sub-sequences is not a key indicator of user
experience or task performance (as we found last year): the relationships
between SS length metrics did not scale with either performance variables (e.g.,
task accuracy, time-to-complete) or experience variables (e.g., cognitive load,
engagement). Rather we found that metrics describing specific usage of SSs
were related to (or proxies for) performance and user experience variables.
Particularly, the composition of sub-sequences users generated and the number
of times they used these sub-sequences (i.e., singletons) were predictors of
performance and user experience. The relationships between these metrics and
performance/experience metrics were consistent regardless of the length of SSs
observed. It’s likely that these effects were masked last year based on the way
we extracted SSs last year.
 We find a few interesting patterns: first, the uniqueness of SS users
generated (Uniqueness of Sub-sequences) describes how varied the
composition of their SSs were—whether SSs were composed with a variety of
activities (e.g., hover, toggle, scroll). We find that users who generated a large
proportion of SSs composed of unique activities (different from one another)
were more likely to show high cognitive load (r = .41, p < .05) and report low task
engagement (r = -.38, p < .05). The second key pattern we find is that users that
generated a high proportion of SSs composed of unique UI element interactions
(e.g., maps, plots, tables) were also more likely to report high cognitive load,
specifically frustration with the interface (r = .51, p < .01). The third pattern we
find is that users with a large portion of single use SS (singletons) are more likely
to report low cognitive load (r = -.38, p < .05) and high engagement (r = .74, p <
.001). Users with a higher proportion of single use SS were also more likely to
take less time to complete tasks (r = -.60, p < .001). These findings posit a
juxtaposition between the uniqueness or variety within sequences and the
number of times individual workflows (e.g., SS) are made use of.
Our interpretation of these findings is that SS metrics for uniqueness capture
floundering or frustration. Users that are composing workflows (e.g., SS) of
wholly unique elements may be randomly testing patterns of interactions rather
than demonstrating systematic, integrated usage of applications. While one might
at first expect that using these kinds of workflows would result in a greater
distribution of effort across all possible activities (e.g., diffuse or not-peaked use),
this doesn’t appear to be the case. In fact, SS uniqueness metrics are

Approved for Public Release; Distribution Unlimited.
40

uncorrelated with BP-HMM metrics (r = -.22, p = .21). The difference between
the two is likely explainable based on the fact that BP-HMM metrics account for
how activities are integrated in time, not just raw frequencies.
SS singleton metrics likely capture an appropriate fit of UI workflow to tasks.
Singleton metrics are inversely correlated with BP-HMM metrics (r = -.41, p <
.05) and somewhat redundant with BP-HMM metrics for peakedness, suggesting
that they tap into how appropriately activities were selected and used together in
time.
 Using step-wise regression, we also observe that BP-HMM peakedness
metrics and SS uniqueness metrics are completely independent measures of
cognitive load. Thus, when added together in multiple regression equations for
cognitive load, they collectively account for nearly 40% of the variation in self-
reported cognitive load. Based on our year 2 findings (36% of variance
explained), this is 4% better prediction than pupillometry (e.g., eye-tracking) on
the same measure.

4.2.3. XDATA Application Evaluation. Our analytic workflow for evaluation is to first

provide descriptive statistics about applications across metrics (performance,
difficulty, usability, etc.) that are easiest to interpret because their information is
intrinsic to the measure, e.g., questionnaires, performance metrics. Following
that we report descriptive statistics for metrics that emerge from intuitive models,
however, they are not explicitly labeled by users. We then take steps to
normalize data prior to determining ranks for applications, based on their
performance against metrics. Finally, we provide rankings for which applications
performed best and worst.
 In year 3, 6 applications were tested with users recruited by DARPA. These
applications were developed to address one of three challenge problems, issued
by DARPA—Population Movements, De-Aliasing, and Financial Fraud.
Evaluations were performed with care so as to invite fair comparisons between
applications within and between challenge problems. In year 4, the same
applications were tested on a massive scale using an MTURK sample of over
1000 persons. Below we present findings and comparisons between applications
on a variety of metrics computed from measures described above (see 4.2.2).
Findings are presented for each evaluation activity, side-by-side. Overall, we
observed few differences in major findings between the two activities. However,
where differences do occur, we defer to findings from year 4 for which there was
substantially more statistical power due to the larger finding. Additionally, it is
worth noting that with the large samples, standard measures of statistical
significance are generally inflated. As such, we report effect sizes, which provide
a clearer depiction of real differences.
 Differences between applications are presented using box plots. Box Plots
provide a better characterization of differences between classes as they depict
the distribution of scores for each class (e.g., applications) and central tendency
measures that make skewed distributions easier to identify than histograms or
bar charts. Whiskers on box plots provide detail on the interquartile range (Tukey
Boxplot), e.g., the spread of the distribution of scores on each metric for each
application. The “box” itself represents the true central tendency or mass of the

Approved for Public Release; Distribution Unlimited.
41

distribution. The solid line represents the median score of the distribution, which
is a measure of central tendency that is less sensitive to skews than means, or
averages. Hollow dots represent outliers in the tails. Where skews exist, we did
not attempt to normalize distributions for evaluation purposes because the goal
of evaluation is accurate description, not inference (e.g., prediction). Outliers
depicted in box plots were not removed, either, because data used for evaluation
was filtered for cases reflecting non-compliance. Examples of non-compliance
are participants not spending sufficient time on tasks (<5mins of 30mins total), or
participants simply “clicking through” tasks, as measured by >60 clicks per
minute average mouse-click activity rate, independent of other activities (e.g.,
pan, scroll, etc.). Our report below reflects the most accurate accounting of
findings.
 In year 3 and 4 we first analyzed task performance metrics and users’
subjective ratings of their experiences with the application. As they are concretely
labeled measures of usability, they provide context for interpreting findings
related to activity during tasks.
 We began each evaluation analysis by examining task performance, as
measured by the number of correctly answered questions within operational
tasks given to participants, of which there were two tasks each composed of 5
questions (10 questions total). Our experimental design has a repeated
measures component: users perform two tasks in sequence. This allows us to
examine whether proficiency with applications and performance improves with
practice. The order with which these tasks are presented to users are
counterbalanced across users so as to rule out whether the order of tasks has a
systematic impact on the performance of tasks. In Year 3, we found significant
differences between applications (F(5,34) = 8.30, p < .000): users of Resonant
and Newman performed best (Figure 29). Corrected, post-hoc comparisons
clearly indicate that Newman users were statistically more accurate than all other
applications, save Resonant and Neon. Resonant users were more accurate
than Aperture users, as were Neon users. In Year 4, we found a sizeable effect
for statistically meaningful differences between applications (F(5,653) = 106.8, p
< .000). Again, post-hoc tests confirm users of Resonant and Newman performed
best, and there were no differences between other applications (Figure 29).

Approved for Public Release; Distribution Unlimited.
42

Figure 29. Task Performance Differences Between Applications
(Yr 3-Left, Yr 4-Right).

Next, we examined whether participants’ performance improved between

repeated exposures with the applications. In year 3, a pair-samples t-test across
each of users’ sessions revealed no differences in performance between
sessions (t (39) = .24, p = .81). In year 4, we discovered very small differences in
performance between sessions (given the sample size; t (658) = 4.24, p < .000).
These findings suggest that participants did not improve in task performance
across different tasks, even with repeated exposure with the same application.
We then examined whether session-related performance differences were
systematically different between applications.

Figure 30. Task Performance Differences Between Sessions, by Application
(Yr 3-Left, Yr 4-Right).

Approved for Public Release; Distribution Unlimited.
43

In year 3, we found no differences in task-related improvement that would
be attributable to differences across applications (F (5,34) = .72, p = .62); post-
hoc pair-wise analyses confirm this is the case. We found the same or similar
pattern in year 4. Though we detected trivial differences (F(5,653) = 4.44, p <
.000) between applications, post-hoc comparisons reveal no statistically
meaningful differences between pairs of applications (Figure 30).
 Next, we analyzed how much time participants spent, on average completing
tasks, which is relevant for understanding participants’ efficiency while using
specific applications. Time-on-Task was computed by extracting time stamps
from the start and end times of each of 10 task components that were completed
by users (or started), finding the difference in time between those times, and
summing across all 10 task component time differences. In Year 3, we find no
statistical differences on this comparison (F(5,34) = 1.31, p = .28) in the ANOVA
model (Figure 31). However, corrected post-hoc comparisons confirm that Feat
users were far more likely to take more time in completing their tasks than all
applications except Minerva. We found no other statistical differences between
applications in year 3. In year 4, we find small, statistically meaningful differences
(F(5, 658) = 37.8, p < .001). Post-hoc pair-wise comparisons highlight differences
between de-aliasing applications (Newman, Resonant) and other applications,
such that participants using these applications spent less time-on-task. There
were also small differences between FEAT, which required the most time-on-task
and population movements applications (Aperture, Minerva, and Neon) (Figure
31).

Figure 31. Time-to-Complete Task Differences, by Application
 (Yr 3-Left, Yr 4-Right).

 The next analyses we perform in course of evaluation is to investigate how
participants rated the application, and label their experiences with applications
through the various post-task questionnaires they complete. Not only are these
analyses descriptive, but they also provide valuable context for interpreting

Approved for Public Release; Distribution Unlimited.
44

findings across measures, given their collinearity. This is also for normalization in
rankings.
 The first of these analyses is to examine participants’ self-reports of task-
related difficulty; they were asked to rate how difficult they felt their tasks were,
independent of the application they were asked to complete the task with. In year
3, our small sample of analysts reported statistically meaningful differences
between applications (F(5,19) = 5.83, p < .01). Post-hoc pairwise comparisons
indicated that differences were primarily driven by dealiasing tasks associated
with the Newman and Resonant applications, which were rated as less difficult
than most other applications, particularly Aperture, Minerva, and FEAT. In year 4,
our large MTURK sample also reported statistically meaningful differences in the
difficulty of tasks associated with challenge problems (F(5, 591) = 93.6, p < .000).
Post-hoc pairwise comparisons indicate that these differences were largely
driven by dealiasing tasks (Newman, Resonant applications), which were rated
much less difficult than other tasks. However, we found that population
movement tasks with Neon were rated significantly less difficult than the same
tasks paired with Aperture, and financial fraud tasks paired with FEAT.

Figure 32. Differences in Self-Reported Task Difficulty, by Application

(Yr 3-Left, Yr 4-Right).

These findings suggest that certain tasks were systematically easier than others,
with dealiasing tasks rated least difficult. Also, while tasks were almost identical
across tools situated within specific challenge problems (e.g., population
movements), participants systematically rated tasks paired with specific
applications (Aperture) as being difficult, while other participants performing the
same tasks with different applications as less difficult. Again, participants were
asked to report on how difficult the task was, independent of the application they
were asked to perform it with. This suggests that participants were unable to de-
couple the intrinsic difficulty of the task with the difficulty imposed on the task by
the application. We do not believe that these effects are driven by expert- or

Approved for Public Release; Distribution Unlimited.
45

novice-effects, given that similar within class (e.g., challenge problem)
differences in difficulty were observed for both our year 3 sample—with self-
selecting analysts (e.g., experts), and our year 4 sample with public MTURK
users. Generally, our findings from year 4 (MTURK users) replicate our findings
from year 3 (Figure 32).
 We next investigated participants’ self-reported cognitive load, which is the
added task difficulty or mental effort imposed by the application used to complete
tasks, independent of how intrinsically difficult the task itself is. We collected
labeled user data about their cognitive load through post-task questionnaires,
following their experiences with applications. Participants were asked to rate
each operational task component based on facets of cognitive load. In year 3,
our small sample of analysts reported statistically meaningful differences in how
the various XDATA applications introduced cognitive load into their tasks (F(5,26)
= 4.76, p < .01). Corrected post-hoc comparisons indicate that Newman users
were substantially less likely to indicate that their tasks required additional mental
effort than all other applications except Neon and Resonant. In year 4, our large
sample of MTURK participants also reported statistically meaningful differences
in how XDATA applications introduced cognitive load into their tasks (F(5, 658) =
41.31, p < .001). Again, corrected post-hoc comparisons indicated that users of
Newman and Resonant reported the least cognitive load. However, with a larger
sample size, our year 4 evaluation indicates that users of Aperture reported the
most cognitive load. Other differences between applications within class
(challenge problems) were not significant (Figure 33).

Figure 33. Differences in Self-Reported Cognitive Load, by Application

(Yr 3-Left, Yr 4-Right).

 In our next examination we explored participants’ reports of task engagement,
which reflects the degree to which participants were immersed within their tasks
and lose a sense of time. In year 3, our ANOVA models indicate significant
differences between applications on engagement measures (F(5,27) = 3.99, p <
.01). Corrected, post-hoc comparisons indicate that differences between
Aperture and Minerva, and Newman and Minerva are driving these effects. Users

Approved for Public Release; Distribution Unlimited.
46

of Aperture were most consistently engaged overall. In year 4, our large sample
of MTURK participants, clarified differences between applications. Again,
statistically meaningful differences (although small, given the sample size)
between applications were observed (F(5, 658) = 12.23, p < .001). Corrected
post-hoc comparisons indicate that participants who worked with de-aliasing
applications (Minerva and Resonant) reported the most engagement. Corrected
post-hoc comparisons suggest that participants who worked with de-aliasing
applications reported more engagement than those who worked with Aperture,
FEAT, and Minerva, but not Neon (Figure 34).

Figure 34. Differences in Self-Reported Task Engagement, by Application
(Yr 3-Left, Yr 4-Right).

 We next examined self-reported differences in task enjoyment—whether
participants simply enjoyed their tasks (with their applications). In year 3, we did
not observe any meaningful differences between applications with respect to self-
reported enjoyment (F(2,27) = .806, p = .5). However, in year 4, with our large
MTURK sample we found small differences between applications with respect to
task enjoyment (F(5,590) = 9.38, p < .000). Overall, participants reported that
they enjoyed tasks with dealiasing applications (Newman and Resonant) and
Neon the most. These three applications were enjoyed significantly more than
Aperture, and Newman was enjoyed significantly more than both Minerva and
FEAT applications (Figure 35).

Approved for Public Release; Distribution Unlimited.
47

Figure 35. Differences in Self-Reported Task Enjoyment, by Application

(Yr 3-Left, Yr 4-Right).

 Finally, we evaluated the XDATA applications with an objective metric of
usability, using data collecting with Apache SensSoft technology. We utilized a
well-validated metric of integrated (or dis-integrated) use stemming from our BP-
HMM modeling technique, describing how participants integrate user interface
elements and allocate their effort across these elements, in time. In this case, the
metric is signed to describe when users are not integrating various UI elements
(e.g., low scores are better), as they might if they understood how the various UI
elements were meant to be used together. This metric shows a strong, positive
association with subjective measures of workload and cognitive load, and a
negative association task performance, and outperforms simple “click-counting”
metrics of activity rate in predicting subjective user reports.
 In both year 3 and year 4, we found this metric to be most sensitive to
differences between applications, compared to other measures (as evidenced by
large F-statistic effect sizes) (Figure 36). While more sensitive, this metric is both
correlated with self-report measures of usability, and generally illustrate similar
trends regarding which applications are most usable. In year 3, large, statistically
meaningful differences on were observed in tests comparing all applications
(F(5,30) = 41.56, p < .000). Post-hoc comparisons revealed that Aperture users
evidenced the least integrated use, but was statistically indistinguishable from
FEAT. These two applications were used in the least integrated way. In year 4,
with a larger sample, we observed similar, but much larger differences across
applications, e.g., stronger effect sizes (F(5, 667) = 205.2, p < .000). This is
notable, given that effects tend to be smaller with larger samples sizes.
Corrected post-hoc comparisons reveal differences between all pairs of
applications, except for Aperture and Minerva, which were not different from one
another in terms of integrated use. FEAT users evidenced the most dis-
integrated use, while Resonant users evidenced the most integrated use.

Approved for Public Release; Distribution Unlimited.
48

Figure 36. Differences in Objective Integrated Use, by Application
(Yr 3-Left, Yr 4-Right).

 The final step we take in evaluating applications is to rank applications based
on usability. These ranks are meant to provide program personnel with
information about the best applications overall—best fit to the tasks users were
provided with them—as well as the best applications within class (e.g., challenge
problem). In order to account for the most information in summarizing ranks
among applications, and to provide a fair assessment of applications, we apply
various weights within the ranking process. Generally, ranks are calculated by
ranking applications across each metric we calculate for each application
(performance, user-experience (subjective ratings), BP-HMM Metrics), then we
average the ranks for each metric across each application and rank against
those averages to provide summary ranks for each application (Net Ranks). This
provides a summary of rankings across metrics, while preserving the scaling and
signage of each metric (whether high scores indicate positive or negative
outcomes). However, because ordinal rankings do not take into account the
actual distance between ranked items (how much they differ from one another
numerically), subtle and trivial differences between applications can cause
rankings that are potentially misleading. As such, two weights are applied to raw
metric values for each application prior to ranking applications against each
metric.
 The first weight addresses the sensitivity of the metric—the ability for the
metric to discriminate between applications given its scaling. In this respect we
weight each metric value by the metrics’ corresponding F-statistic (see above
sections) for between application differences. Thus in aggregate, this weighting
scheme weights the input to averages based on metrics with the most
discriminant power. The second weight that is applied is for task difficulty. These
weights are meant to reflect the intrinsic difficulty of the tasks that applications
are paired with owing to the data and challenge problem they are developed for.
In certain cases, some applications are meant to address less complex tasks
(e.g., dealiasing vs. populations) and it is a concern as to whether certain

Approved for Public Release; Distribution Unlimited.
49

advantages are given to these applications in rankings. Thus, task difficulty
ratings are averaged across all ratings taken from the same challenge problems,
as these were similar tasks. These averages are then multiplied by metric values
that are positively signed (e.g., more weight is given to task performance metrics
for tasks that were more difficult), and are divided from metrics that are
negatively signed (e.g., less weight is applied to cognitive load scores for
applications paired with more difficult tasks).
 In summary, in year 3 application rankings are given in Figure 37. The
bounded cells (in orange) reflect metric values for key usability metrics (cognitive
load, dis-integrated use). The Net Rank column indicates rankings for each
application across metrics, without weighting. Weighted Rank columns indicate
ranks after accounting for metric sensitivity (F) and both metric sensitivity and
task difficulty (diff). Overall, in year 3, de-aliasing applications tended to perform
better against other applications across different weighting schemes, with
Newman performing best in that class. FEAT consistently underperformed
relative to other applications. Within the Population Movements challenge
problem, Neon consistently performed better than either Aperture or Minerva.

Figure 37. Year 3 Application Rankings Against Key Usability Metrics

Year 4 application rankings are given in Figure 38. Again, the bounded cells (in
orange) reflect metric values for key usability metrics (cognitive load, dis-
integrated use). The Net Rank column indicates rankings for each application
across metrics, without weighting. Weighted Rank columns indicate ranks after
accounting for metric sensitivity (F) and both metric sensitivity and task difficulty
(diff). Overall, in year 4, de-aliasing applications tended to perform better against
other applications across different weighting schemes, although not as strongly
when weights were applied reflecting task difficulty (these were with Newman
performing best in that class). Aperture consistently underperformed relative to
other applications across weighting schemes. Within the Population Movements
challenge problem, Neon consistently performed better than either Aperture or
Minerva.

Figure 38. Year 4 Application Rankings Against Key Usability Metrics

Approved for Public Release; Distribution Unlimited.
50

Overall, it is Draper’s determination that the Dealiasing applications performed
better than other applications, with Newman being the best application. The two
applications that consistently underperformed are Aperture and FEAT. Within the
Population Movements class of application, Neon consistently outperformed both
Aperture and Minerva. This determination disregards weighting applied to correct
for differences owing to task difficulty. The reason for this is that it is abundantly
clear (especially after year 4 analyses) that subjective ratings for applications’
usability where highly collinear with ratings for difficulty, regardless of how
questions were phrased. In particular, participants’ ratings of cognitive load were
meant to be anchored in how difficult they though the application made the task,
regardless of the intrinsic difficulty of the task. In contrast, task difficulty ratings
were solicited with juxtaposing prompts—how difficult the task is regardless of
the tool used to perform it. Given various statistical analyses reported above, it
was the case that participants were unable to disentangle the two—this is
obvious given the metric values for task difficulty relative to task performance,
cognitive load, etc., and that these value vary within challenge problems or
application class, even though all applications of the same class were paired with
nearly identical tasks. The same pattern was also observed in both expert
samples (e.g., analysts) and novice samples (e.g., MTURK). As such, weighting
based on difficulty is problematic. At this point it is clear that applications that
were difficult to use made the task more difficult in general, which is clear
evidence that specific applications (e.g., Aperture) introduced cognitive load into
tasks. Therefore, our determination of the application rankings are driven by
ranks weighted by metric sensitivity (F), not those that also incorporate weights
for task difficulty.

4.3. Publicity and Community Development

 Draper made significant progress in raising the visibility of SensSoft, as well
as exploring communities of users in which the technology would have the most
impact. Over the course of the 4th year of the XDATA program, the Apache
SensSoft community grew only modestly, however, this is largely due to the fact
that the bulk of our capabilities were built and transitioned to ASF within the
same year. Efforts to continue the Apache SensSoft project and grow this
community will persist well after the completion of the XDATA program.

4.3.1. Inclusion into the Apache Software Foundation (ASF). In May 2016, Draper

was invited to submit a proposal to include corpus of SensSoft source code into
the ASF. Our proposal was accepted by unanimous vote in September 2016, and
Software as a Sensor™ became a part of the ASF as an Apache Incubator
project. Our Apache champion for this project is Lewis McGibbney (NASA Jet
Propulsion Laboratory (JPL)), and our other mentors are Wayne Burke, Paul
Ramirez, and Chris Mattmann. Code was officially transitioned to Apache in
October 2016 by Draper and our code base was transferred to Apache
infrastructure by November 2016. From December to the submission date of this
report, Draper has been preparing for our first official Apache public release of
our products, this task includes ensuring licensing, build stability, and updating

Approved for Public Release; Distribution Unlimited.
51

documentation. The project can be found at
http://incubator.apache.org/projects/senssoft.

4.3.2. Exhibitions, Demonstrations and Public Outreach. As part of our publicity and
community development efforts, Draper sought to both establish a presence both
online, as well as in specific communities including, Internet of Things, UI and
User Experience (UX) practitioners, and business analytics interest groups.
 Inclusion in the ASF provided a key vehicle to grow a community of interest
and online presence, in part because of its visibility and opportunities to network
with the larger ASF open-source community. As a “landing-pad” for our online
presence, we established a comprehensive website for posting information about
the Apache SensSoft project, including community information, software
documentation, links to software repositories (git, github), and interactive
demonstrations (Figure 39, http://senssoft.incubator.apache.org). Given the
nature of our technology, our demo allows visitors of the page to interact with the
page, see their behavior through a live logging server, and a means to visualize
the behavior of page visitors through the “Bowie” plot (Figure 40).

Figure 39. Screenshot of the Apache SensSoft Webpage

http://incubator.apache.org/projects/senssoft
http://senssoft.incubator.apache.org/

Approved for Public Release; Distribution Unlimited.
52

Figure 40. Interactive Demos Hosted on the Apache SensSoft Webpage

 We also formed a social media presence through our Apache message
boards, a Twitter account (@ApacheSensSoft), as well as a YouTube channel
(Apache SensSoft) for posting videos and demos (see
http://senssoft.incubator.apache.org/community/). We coordinated these
investments with a number of exhibitions at trade-shows throughout 2016 for
interest groups related to the Internet of Things (Sensors Expo; San Jose, CA,
5/2016), business analytics (eMetrics Summit; New York, NY, 10/16), and UI/UX
(UIE21; Boston, MA, 11/16). For these events, Draper prepared distinctive
branding and marketing materials (Figure 41) to generate interest in the Apache
SensSoft project, as well as booth set up for exhibitions (Figure 42).

Figure 41. Apache SensSoft Marketing Materials

http://senssoft.incubator.apache.org/community/

Approved for Public Release; Distribution Unlimited.
53

Figure 42. SensSoft Exhibition Booth Display

4.3.3. Transition Opportunities. In addition to public outreach, Draper also reached
out to transition partners within the USG and DoD. We sought to provide a
means for providing the innovations and distinctive capabilities developed as part
of the XDATA program to agencies that would benefit from these efforts. In this
regard we were successful. In the fall of 2016, NGA Research included the
SensSoft project as an added task item in an existing collaborative research and
development agreement (CRADA) held between NGA and Draper. The scope of
this task involves providing business analytics and user testing services to NGA
for their current applications, as well as research and development activities to
benefit future capabilities utilizing SensSoft. In January 2017, NGA approved
SensSoft software for use within the agency. We are currently working to deploy
SensSoft within AWS resources provisioned by NGA. Draper has also received
additional funding through both DARPA (RSPACE) and IARPA (MOSIAC) for
SensSoft projects.

Approved for Public Release; Distribution Unlimited.
54

5. CONCLUSIONS

Over the course of four years of performance on DARPA’s XDATA program,
Draper consistently focused our technical effort to meet the challenges posed by
Dr. Chris White and Dr. Wade Shen. Blending rigorous scientific research and
robust software development, Draper was able to innovate new, non-invasive
methods for evaluating the usability of software applications. Draper’s Software
as a Sensor™ technology provides the means for collecting high-granularity
software activity logs as well as a back-end, scalable infrastructure that makes
these methods available to a wide open-source community through the Apache
SensSoft project. Modeling approaches we developed to derive insights from
software activity logs show comparable or discriminating abilities to predict key
usability metrics, as well as advantages over canonical laboratory and self-report
methods. In this respect, Draper has substantively contributed a major
advancement in the field of human computer interaction. With viable transition
opportunities in the commercial, DoD, and open-source communities, Draper will
continue to develop this capability and push forward the fields of human
computer interaction and human system integration.

Approved for Public Release; Distribution Unlimited.
55

6. References

[1] J. T. Cacioppo, et al., "The efficient assessment of need for cognition," Journal of

Personality Assessment, vol. 48, pp. 306-307., 1984.
[2] S. Epstein, et al., "Individual differences in intuitive-experiential and analytical-

rational thinking styles.," Journal of Personality and Social Psychology, vol. 71,
pp. 390-405., 1996.

[3] S. Frederick, "Cognitive reflection and decision making," Journal of Economic
Perspectives, vol. 19, pp. 25-42, 2005.

[4] G. Nenkov, et al., "A short form of the maximization scales: Factor structure,
reliability and validity studies.," Judgment and Decision Making, vol. 3, pp. 371-
388, 2008.

[5] P. Norris, et al., The rational-experiential inventory, short form. Unpublished
Inventory. Amherst, MA.: University of Massachusetts at Amherst., 1998.

[6] A. Roets and A. Van Hiel, "Item selection and validation of a brief, 15-item
version of the need for closure scale.," Personality and Individual Differences,
vol. 50, pp. 90-94, 2011.

[7] D. Webster and A. Kruglanski, "Individual differences in need for cognitive
closure," Journal of Personality and Social Psychology, vol. 67, 1994.

[8] A. Fagerlin, et al., "Measuring numeracy without a math test: Development of the
subjective numeracy scale (SNS). ," Medical Decision Making, vol. 27, pp. 672-
680., 2007.

[9] B. J. Zikmund-Fisher, et al., "Validation of the subjective numeracy scale (SNS):
Effects of low numeracy on comprehension of risk communications and utility
elicitations.," Medical Decision Making, vol. 27, pp. 663-671., 2007.

[10] A. H. Roscoe and G. A. Ellis, "A subjective rating scale for assessing pilot
workload in flight: A decade of practical use," DTIC Document1990.

[11] J. H. Brockmyer, et al., "The development of the Game Engagement
Questionnaire: A measure of engagement in video game-playing," Journal of
Experimental Social Psychology, vol. 45, pp. 624-634, 2009.

[12] J. Nielson and R. Molich, "Heuristic evaluation of user interfaces.," in ACM CHI,
Seattle, WA, 1990, pp. 249-256.

[13] L. J. Mariano, et al., "Modeling Strategic Use of Human Computer Interfaces with
Novel Hidden Markov Models," Frontiers in psychology, vol. 6, 2015.

[14] L. Rabiner and B.-H. Juang, "An introduction to hidden Markov models," ASSP
Magazine, IEEE, vol. 3, pp. 4-16, 1986.

[15] R. Kelley, et al., "Understanding human intentions via hidden markov models in
autonomous mobile robots," in Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, 2008, pp. 367-374.

[16] K. Bernardin, et al., "A sensor fusion approach for recognizing continuous human
grasping sequences using hidden Markov models," Robotics, IEEE Transactions
on, vol. 21, pp. 47-57, 2005.

[17] J. Schlenzig, et al., "Recursive identification of gesture inputs using hidden
markov models," in Applications of Computer Vision, 1994., Proceedings of the
Second IEEE Workshop on, 1994, pp. 187-194.

[18] S. Schliehe-Diecks, et al., "On the application of mixed hidden Markov models to
multiple behavioural time series," Interface focus, p. rsfs20110077, 2012.

Approved for Public Release; Distribution Unlimited.
56

[19] M. C. Hughes, et al., "Effective split-merge Monte Carlo methods for
nonparametric models of sequential data," in Advances in Neural Information
Processing Systems, 2012, pp. 1295-1303.

[20] K. T. Durkee, et al., "System decision framework for augmenting human
performance using real-time workload classifiers," in 2015 IEEE International
Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision, 2015, pp. 8-13.

[21] V. D. Blondel, et al., "Fast unfolding of communities in large networks," Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, p. P10008, 2008.

[22] G. Navarro, "A guided tour to approximate string matching," ACM computing
surveys (CSUR), vol. 33, pp. 31-88, 2001.

[23] W. Cohen, et al., "A comparison of string metrics for matching names and
records," in Kdd workshop on data cleaning and object consolidation, 2003, pp.
73-78.

Approved for Public Release; Distribution Unlimited.
57

7. APPENDIX A – Publications and Presentations

Poore, J.C., Bowers. C. (2016) Editorial: Virtual Environments as Study Platforms for
Realistic Human Behavior. Frontiers in Psychology, 7, DOI:
10.3389/fpsyg.2016.01361, URL:

 https://www.researchgate.net/publication/308660420_Virtual_Environments_as_
Study_Platforms_for_Realistic_Human_Behavior

Poore, J.C., Bowers, C. (Editors). Virtual Environments as Study Platforms for Realistic

Human Behavior. Frontiers in Psychology Research Topic. URL:
 https://www.researchgate.net/publication/308660420_Virtual_Environments_as_

Study_Platforms_for_Realistic_Human_Behavior

Poore, J.C. (2016). Human Signal Data Collection in the Wild. Paper presented at the

2016 Human Factors and Ergonomic Technical Advisory Group Conference,
Langley, VA.

Poore, J.C. (2016). Embedding Human-System Integration Metrics in Agile Software

Evaluation Environments: The Value of Opportunistic Data Collection. Paper
presented at the 2016 National Defense Industrial Association Human Systems
Conference, Springfield, VA.

Schwartz, J.L., Poore, J.C., Mariano, L.J. (2015). Evaluating How Analysts Make Use of

their Tools to Inform Tool Development, Integration, and Adaptation. Poster
presented at the 2015 Science of Multi-Intelligence (SOMI) Workshop, Chantilly,
VA.

Poore, J.C., Mariano, L.J., Schwartz, J.L. (2015). Operationally Relevant Metrics for

Analyst Test-Beds: Evaluating How Analysts Make Use of their Tools to Inform
Tool Development, Integration, and Adaptation. Paper presented at the 2015
National Defense Industrial Association Human Systems Conference,
Alexandria, VA.

https://www.researchgate.net/publication/308660420_Virtual_Environments_as_Study_Platforms_for_Realistic_Human_Behavior
https://www.researchgate.net/publication/308660420_Virtual_Environments_as_Study_Platforms_for_Realistic_Human_Behavior
https://www.researchgate.net/publication/308660420_Virtual_Environments_as_Study_Platforms_for_Realistic_Human_Behavior
https://www.researchgate.net/publication/308660420_Virtual_Environments_as_Study_Platforms_for_Realistic_Human_Behavior

Approved for Public Release; Distribution Unlimited.
58

8. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ASF Apache Software Foundation™

ALv2 Apache License (version 2)

API Application Program Interface

AWS Amazon Web Services

BP-HMM Beta-Process Hidden Markov Model

CRADA Collaborative Research and Development Agreement

D3 Data Driven Documents

DARPA Defense Advanced Research Projects Agency

DOM Document Object Model

F The F statistic refers to a Type III Wald test, otherwise known as an
Analysis of Variance (ANOVA). Accompanying notation in
parentheses (e.g., F(x,y)) indicate the number of degrees of
freedom available for parameter estimation within groups and
between groups (Statistics). Interpretation: The F statistic
summarizes the net separation between distributions of data
organized between different groups of data, each with their own
average value and standard deviation. The test is meant to
ascertain whether the groups are members of the same set or
different sets. A low F statistic would indicate less separation
between groups, and less confidence that the groups were sampled
from different distributions.

HMM Hidden Markov Model

HSIRB Human Subjects Independent Review Board

IARPA Intelligence Advanced Research Projects Agency

IR&D Internal Research and Development

JPL Jet Propulsion Laboratory

JSON Java Script Object Notation

LCS Longest Common Sub-Sequence

LOE Level of Effort

MOT Massive Online Testing

MTURK Amazon Mechanical Turk

NGA National Geospatial Intelligence Agency

Approved for Public Release; Distribution Unlimited.
59

p The P value (p) is the probability of obtaining an effect at least as extreme
as the one observed in a sample data, given that the null hypothesis is
true (Statistics). Interpretation: A small P value would indicate that if the
null hypothesis were true (no statistical effect), then a similarly sized
statistical effect would be a rare occurance.

r The Pearson Correlation Coefficient (r) is the linear effect size between
two variables (vectors or array), as indicated by the slope of a regression
line describing the relationship between those two variables in
standardized Euclidean space (Statistics). Interpretation: A correlation
approaching 1.00 would indicate perfect prediction such that for every
one unit increase, in standard deviation, for one variable, the other
variable would increase, in standard deviation, by one unit as well. A
negative correlation of -1.00 would indicate that for each unit increase
(standard deviation) of one variable, the other would decrease by one unit
(standard deviation).

R2 The squared value of the Pearson Correlation Coefficient (r multiplied by
itself) (Statistics). Interpretation: results in a percentage that indicates the
shared covariation between two correlates, or the percent of variation in
the criterion variable attributable to the variation in the predictor variable,
per se.

REST Representational State Transfer

S&T Science and Technology

SCO+CH Scale Computation and Codebook Handling

SENSSOFT Software as a Sensor™

SM SurveyMonkey.com

SS Sub-Sequence

STOUT Subject Tracking and Online User Testing (application)

t The t value indicates the results of Student’s t-test for difference
between two groups. It is named for the specialized test distribution
used to generate its value. It is accompanied by a parenthetical
indicating the number of degrees of freedom used in estimating its
parameters (Statistics). Interpretation: The t-test tests for
differences between two groups of values. A small t-test value
would indicate trivial or no differences between groups, and little
confidence that the two groups are not sampled from the same set.

TAP Test Application Portal

UI User Interface

UserALE User Analytic Logging Engine (application)

UserALEv3 User Analytic Logging Engine (application; version 3)

Approved for Public Release; Distribution Unlimited.
60

UserALE,js User Analytic Logging Engine (application; Java Script)

USG United States Government

UX User Experience

	LIST OF FIGURES
	LIST OF TABLES
	1. SUMMARY
	2. INTRODUCTIONS
	2.1. Software Development
	2.2. Evaluation and Human Subjects Research Activities
	2.3. Publicity and Community Development

	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1. Software Development
	3.2. Evaluation and Human Subjects Research Activities
	3.3. Publicity and Community Development

	4. RESULTS AND DISCUSSION
	4.1. Software Development
	4.2. Evaluation and Human Subjects Research
	4.3. Publicity and Community Development

	5. CONCLUSIONS
	6. References
	7. APPENDIX A – Publications and Presentations
	8. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

